

Information Summit

Preparation Master Class 2017

26.01.2017 • Department Petroleum Engineering

Overview

- PE students select elective group
 - Reservoir, Drilling, Production
- Master Class 2017 curriculum elective groups
- Pre-requisites for master classes
- Key elements of a master class
- Guidelines: Code of Conduct, Examination Guidelines, DPE Master Class Concept

MSc – Reservoir Engineering

List of Abbreviations – Reservoir Engineering

DEPARTMENT PETROLEUM ENGINEERING

MONTAN UNIVERSITÄT

ABG	Advanced Borehole Geophysics	WP	Well Placement	RSM I	Reservoir Simulation Methods I: Basics
APE	Advanced Petroleum Economics	WRG	Wellbore Reservoir Geomechanics	RSP	Reservoir Simulation Practical
CCM	Computational Continuum Mechanics	IFDP	Introduction to Field Development Project	FDP	Field Development Project
CMPI	Crisis Management in the Petroleum Industry	LRP	Literature Review Project DE/PROD/RES/AGS	NA	Nodal Analysis
FIS	Formation Impairment and Stimulation	PAFD	Practical Aspects of Field Development	RE 2:S	Reservoir Engineering 2: Storage, Sequestration and Geothermal Energy
GM	Geomodeling	EOR	Enhanced Oil Recovery	RE 2:U	Reservoir Engineering 2: Unconventional Resources
HSE	Health, Safety and Environment	RCM	Reservoir Characterization and Modeling	RM	Reservoir Management
PE	Petroleum Exploration	GDP	Geostatistics & Data Processing	RSM II	Reservoir Simulation Methods II: Advanced Concepts
PM	Project Management for PE	RE 2:C	Reservoir Engineering 2: Advanced Concepts for Conventional Resources	SCAL	Special Core Analysis

MSc - Drilling Engineering

List of Abbreviations – Drilling Engineering

ABG	Advanced Borehole Geophysics	WP
APE	Advanced Petroleum Economics	WRG
CCM	Computational Continuum Mechanics	ADT
CMPI	Crisis Management in the Petroleum Industry	IFDP
FIS	Formation Impairment and Stimulation	LRP
GM	Geomodeling	MC
HSE	Health, Safety and Environment	OT
PE	Petroleum Exploration	PAFE
PM	Project Management for PE	WCE

Well Placement Wellbore Reservoir RG A Geomechanics Advanced Drilling Technology Т Г Introduction to Field)P **Development Project** P Literature Review Project Ν DE/PROD/RES/AGS Metallurgy and Corrosion for С ΡE Offshore Technology ٧ Practical Aspects of Field D W Development CΕ Well Construction Equipment ۱

NCPS	Well Construction Problems and Solutions
VCML	Well Construction Mechanical Lab
WCFL	Well Construction Fluids Lab
WC	Well Control
ICMA	Measurement Control. Monitoring and Analysis
FDP	Field Development Project
DPEP	Drilling Process Evaluation and Planning
WMA	Advanced Well Monitoring and Analysis
WTO	Well Testing Operations

MSc – Petroleum Production Engineering

List of Abbreviations – PPE

ABG	Advanced Borehole Geophysics	WRG	Wellbore Reservoir Geomechanics
APE	Advanced Petroleum Economics	IFDP	Introduction to Field Development Project
ССМ	Computational Continuum Mechanics	LRP	Literature Review Project DE/PROD/RES/AGS
CMPI	Crisis Management in the Petroleum Industry	MC	Metallurgy and Corrosion for PE
FIS	Formation Impairment and Stimulation	PAFD	Practical Aspects of Field Development
GM	Geomodeling	WCE	Well Construction Equipment
HSE	Health, Safety and Environment	WTO	Well Testing Operations
PE	Petroleum Exploration	ALS	Artificial Lift Systems
PM	Project Management for PE	ALSP	Artificial Lift Systems Practical
WP	Well Placement	EOR	Enhanced Oil Recovery

MONTAN UNIVERSITÄT

PLE	Pipeline Engineering
RCM	Reservoir Characterization and Modeling
FDP	Field Development Project
MCMA	Measurement Control. Monitoring and Analysis
AOGGER	Advanced Oil, Gas and Geothermal Energy Recovery
EEPP	Energy Efficiency in Petroleum Production
NA	Nodal Analysis
NGT	Natural Gas Technology
OOPF	On- and Offshore Production Facilities

PDA Production Data Analysis

Pre-requisites and recommendations

- Pre-requisite for the Master Study Program PE: Bachelor degree + potential supplementary courses
- Pre-requisite for the master study lectures according to PE curriculum

• Strong recommendation:

- Finalize the 1st semester of the master program PE before enrolling for the master class
- Approved master thesis proposal in December 2017 to graduate in June 2018

Key Elements of a Master Class 2017 (1)

- Novel way to teach master students in a focused way within one year
- Three master classes offered Reservoir, Drilling, Production
- Integrated lectures
 - Imparting of new concepts lecturing
 - Deepening knowledge practicing
 - Application to engineering problems project work
- Lecture specific additional support on demand, group approach

Key Elements of a Master Class 2017 (2)

- Each master class student has its workspace and locker for the one year of the master class (refundable deposit of 60 EURO)
- Master class covers Semesters 2 and 3 of the Master Study Program PE
- Special Case students attending selected lectures
 - Students with > 4 master semesters
 - Students with individual curricula
 - Foreign exchange students
- Target number of students per master class: 25

Master Class 2017

An exemplary integrated lecture of 3 ECTS, 75 hours workload

- Preparation Phase, 10% workload (7,5 h)
 - Preparation of required skills and knowledge self-study
 - Self assessment, not graded but successful completion can add up to 10% of the achievable grade
- Lecturing and Practical Phase (67,5 h, example on the next slide)
 - Theory units are combined with practical ones in one block
 - 28-30h lectures and practicals
 - 37,5-39,5 self-study, group study, ...
- Evaluation phase
 - While integrated lectures students are assessed continuously (e.g. 2 tests, 15% of total grade each)
 - Application oriented project work (20% of grade)
 - Final exam (50% of grade)

Master Class 2017

3

An exemplary integrated lecture of 3 ECTS, 75 hours workload

	Week 1							Week 2							
	М	Т	W	Т	F	S	S	M		Т	W	Т	F	S	S
9 am —	Self- Assessment	2	2					Test	1	2	2				
12 pm	Introduction	1								4					_
		1	1						_	1	1		_		
1 pm -		3	3							3	3				
4 pm															
			Wee	k 3					Week 4						
	M	Т	W	Т	F	S	S	М	Т		W	Т	F	S	S
9 am	Test 2	2											Final Exam		
 12 pm		1													

Key New Concepts – Theory Lectures (hr) Deepening Knowledge – Practicals (hr) Free Practice / Project Work Test / Examination Project Presentation & Defence

26.01.2017 • Page 14

1 pm

_

4 pm

Project

Present

ation &

Defence

Guidelines for Master Class 2017

- Master Class Concept
- DPE Code of Conduct
- DPE Examination Guidelines

- Available at secretaries
- Communicated to master students via email

Feedback

- Schedule
- DPE Guidelines
- Selection of elective group
- Students to provide feedback to the students representatives by February 3rd 2017

